- **7.** (a) Show that :
 - nat.

2

2

- $\tan\frac{\theta}{7} + \tan\frac{\theta + \pi}{7} + \dots + \tan\frac{\theta + 6\pi}{7} = 7\tan\theta.$
- (b) If $\tan(\theta + i\phi) = \sin(x + iy)$, prove that $\coth y \cdot \sinh 2\phi = \cot x \cdot \sin 2\theta$. 2.5

Section IV

- **8.** (a) Solve the equation :
 - $\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}.$
 - (b) Separate into real and imaginary parts :

$$\cosh^{-1}(x+iy).$$
 2.5

- 9. (a) Sum the series $\tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} +$
 - $\tan^{-1} \frac{1}{13} + \dots$ to *n* terms and deduce the sum to infinity.
 - (b) Sum the series:
 - $\cos\theta \frac{1}{2}\cos 2\theta + \frac{1}{3}\cos 3\theta \dots \infty . \qquad 2.5$

Z-32007 4 120

No. of Printed Pages: 04 Roll No.

32007

B.A. & Hons. (Subsidiary) EXAMINATION, 2025

(Second Semester)

(Re-appear Only)

MATHEMATICS

Paper BM-121

Number Theory and Trigonometry

Time: 3 Hours [Maximum Marks: 27

Before answering the question-paper, candidates must ensure that they have been supplied with correct and complete question-paper. No complaint, in this regard will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting *one* question from each Section. Q. No. 1 is compulsory.

(Compulsory Question)

1. (a) Show that $(2^{4n} - 1)$ is divisible by 15.

2.5

- (b) If a/bc and (a, b) = 1, then a/c.
- (c) If $x = \cos \theta + i \sin \theta$, then find $x^n \frac{1}{x^n}$.

2

(d) Find the general value of Log(-5). 2.5

Section I

- 2. (a) If a, m, n are non-zero integers, then (a, m, n) = 1 if and only if (a, m) = 1 and (a, n) = 1.
 - (b) State and prove Euclid's second theorem.2.5
- 3. (a) Solve the congruence $222x \equiv 12 \pmod{18}$.
 - (b) State and prove Fermat's theorem. 2.5

2

Section II

- **4.** (a) Prove that $\phi(n) = \frac{n}{2}$ iff $n = 2^k$ for some integer $k \ge 1$.
 - (b) If x is any real number, then $\left[\frac{[x]}{n}\right] = \left[\frac{x}{n}\right]$, where n is a positive integer. 2
- 5. (a) Find all n such that d(n) = 10. Hence find the least such value of n.
 - (b) If p is an odd prime, then $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 1}{8}}.$ 2.5

Section III

- 6. (a) If α , β be the roots of $x^2 2x + 4 = 0$, prove that $\alpha^n + \beta^n = 2^{n+1} \cos \frac{n\pi}{3}$.
 - (b) If z = x + iy, where x and y are real, find the real and imaginary parts of $\frac{\cos z}{z+1}$.

2.5